If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x=17
We move all terms to the left:
2x^2+16x-(17)=0
a = 2; b = 16; c = -17;
Δ = b2-4ac
Δ = 162-4·2·(-17)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-14\sqrt{2}}{2*2}=\frac{-16-14\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+14\sqrt{2}}{2*2}=\frac{-16+14\sqrt{2}}{4} $
| 0.2(3x+4)=0.4(5+3x) | | (3x)=98 | | n=34n2-n+3 | | -2x+10-(x+3)=10 | | (11x-2)-(9x+2)=10 | | w/5-17=-12 | | 9-3x=7x-31 | | g2+ 10=14 | | 3(x+15)-2(-x+10=-15 | | 6.2x=52 | | x+102+78+38=360 | | –9x+8=x–12 | | 5(3x-3=-90 | | 5x+4=2x=37 | | y/12=2y=24 | | 2q+961=447 | | x+103+35+104=360 | | 3x–5+2x+4=19 | | x–14=7–2x | | 2(4x-4)+2=4(x+1)+6 | | 5x+4+2x=37 | | 7/p=28 | | x+111+40+134=360 | | 28-p=7 | | 6m–5=7m+7–m | | 28-7=p | | 15−(–7f)=92 | | 5n-14=11= | | x+40+11+134=180 | | 15−–7f=92 | | 4u-18=u+15 | | 4^x-1=32 |